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At present, fatigue fracture (FF) is described by means of empirically established laws 
(such as the Paris law [i, 2]). The lack of universal physical models of the FF process is 
making it more difficult to properly set up experiments to explain the effect of the micro- 
socpic and mesoscopic characteristics of the material on FF. In the present investigation, 
we attempt to describe FF as the diffusion limited aggregation (DLA) [3, 4] of microdamages 
in the plastic region at the crack tip. This allows us to construct the model of fatigue- 
crack propagation on the basis of iterations of a discrete random mapping. This approach to 
the description of FF requires the use of characteristics - such as the fractal dimension 
(FD) of the FF surfaces (characterizing their geometric similitude [5]) - which differ from 
those traditionally used in fracture mechanics. 

i. Locality of the FF Process. The fatigue fracture of macroscopic specimens (parts 
etc.) occurs at stresses much lower than the yield point Oy due to the singular behavior of 

the stresses near the crack tip. This behavior conforms to the Irwin solutions in the elas- 
tic region [I]. The boundary of the plastic zone around a crack tip is usually determined 
from the von Mises criterion 

2 
3J~ = Oy (i.i) 

(J2 is the second invariant of the stress deviator). In the proposed model, it is assumed 
that all FF processes occur inside a plastic region with a boundary determined by Eq. (i.i). 

In reviewing the large amount of fractographic data for fatigue fracture surfaces [2], 
it can be concluded that the propagation of fatigue cracks is not a continuous process but 
is more likely a discrete, incremental event. This conclusion is based specifically on the 
fact that the number of cycles per characteristic fractographic dimension in fatigue tests 
is much greater than unity. In other words, the crack advances after a certain degree of 
damage to the material has been attained in the plastic zone during cyclic loading. The 
life of the plastic zone can be estimated from the data in [6], for example. Here, it was 
shown that, under the same experimental conditions, the dependence of fatigue-crack velocity 
on the number of cycles correlates with the corresponding relations for certain acoustic- 
emission characteristics. In this case, there is a lag of 5000 cycles (the correlation co- 
efficient is greater than 0.94). Meanwhile, the product of this value and crack velocity 
roughly corresponds to the size of the plastic zone. 

2. Fatigue Fracture as a DLA of Microdamages. The accumulation of damages is one of 
the channels for dissipating the mechanical energy supplied to the specimen. We will assume 
that this process has an affinity with DLA and we will use the well known DLA model in [3] 
based on evolutionary equations for concentrations of clusters of microdamages C M and the 
number M of associated individual damages (such as vacancies): 

dCM __ 
dt - -  - - ~ - ~  K ( ] ,  M - -  ] ) C ~ C M - j - - C ~ u  ~.. K ( M , i ) C i .  

j=l i=i 

(2.1) 

It should be noted that the DLA is a rather general theory, in view of the fact that 
the range of the forces joining the "particles" into an aggregate is much smaller than the 
size of the aggregate (not only due to the nature of these forces in the case of short-range 
action, but also due to the shielding effect). Thus, the properties of the aggregate should 
be independent of the nature of the binding forces [7]. The cluster-cluster DLA model in 
[3] is analogous to a description of processes involving nucleation and annihilation, while 
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the formulation of the problem on the basis of equations for rates of change in concentra- 
tion implies that the unions of microdamages are kinetic in character. 

The model being proposed here for the fracture of the plastic zone in front of the tip 
of a fatigue crack can be described as follows. Microdamages accumulate and combine in the 
plastic zone, the evolution of these microdamages being described by Eqs. (2.1) with the mul- 
tiplicative kernel K(i, j) ~ (i, j)m. At m > 1/2, a single cluster "survives" from among the 
numerous clusters of different dimensions and attaches itself to other clusters [4]. Intui- 
tively, this case corresponds to ductile FF. The solutions of Eqs. (2.1) have the properties: 

< M > ~ { ,  C M . - . M - ~ t  -~ ,  z = t / ( t - - 2 ~ ) ,  ( 2 - - ~ ) z = w  ( 2 . 2 )  

( t h e  ang le  b r a c k e t s  deno te  s t a t i s t i c a l  a v e r a g i n g ) .  

Also ,  c o n s i d e r i n g  t he  e x p e d i e n c y  of  assuming t h a t  both  t he  damage to  t he  m a t e r i a l  [8] 
and a g g r e g a t e s  [4] i s  of  a f r a c t a l  n a t u r e ,  we put  

M " ( R ~ )  D ( 2 . 3 )  

(R M is the size of an aggregate M, while D represents the fractal dimension FD). We use 
properties (2.2) to find (R<M>)D ~ <M> ~ t z. Considering that the crack advances when R<M > 

reaches a critical value proportional to crack length E (as is the size of the plastic zone - 
see below) we obtain 

(N is the number of cycles). 
stress intensity factor (SIF) 

dl/dN ~ BiMl/t ~ (RIM))~-D/~ ~ l~-D/~ 

Comparison with the Paris law dE/dN ~ KI n ~ ~n/2 
[i]) gives 

(K I is the 

n = 2 + D2(2~ -- I). (2.4) 

An expression has also been found for the dependence of the density of total strain 
energy in FF tests AWf on the number of cycles to fracture Nf [9]: 

A W I  = kN~ + c ( 2 . 5 )  

(k, c, and ~ are material constants). This expression can be explained as follows. Let us 
suppose that a crack moves in uniform increments s over a certain crack-length interval from 
E0 to s where fracture occurs. We further assume that the strain-energy density for each 
increment is W I. In an approximation of cylindrical symmetry with the symmetry axis along 
the crack front, we have W I ~ s 2 for the case of loading of the crack by the first mode. 
Then the total strain-energy density will be the sum of the crack-growth increments. At a 
cyclic-loading frequency v, with allowance for (2.2), (2.3) we obtain 

N s N s N s N s N s 

(N s is the number of increments, while tl and N l are the time and number of cycles with elapse 
for each increment). This simple model gives the relationship between the FD and the expo- 
nent ~: 

(2~- I)D = --2/e. (2.6) 

According to the data in [9], ~ = -43.665. From this, for ~ = (I - 2/(aD))/2 we have 
z 1.5 > 1/2. The latter result qualitatively reflects the above assumption regarding 

and the ductile character of fracture of the low-alloy steel for which Eq. (2.5) was obtained 
[9] (steel ASTM A 516 Gr 70). Thus, the proposed model provides a qualitative interpretation 
of the negativity of the exponent a. 

Taken together, Eqs. (2.4) and (2.6) can be regarded as a "one-power" scaling analogous 
to the two-power scaling in phase transformation theory. This implies that FF is regarded 
as one of the critical phenomena for which the formation of fractal structures is a natural 
event under critical conditions. The above-described FF model also makes it possible to 
adopt the simplification that the crack advances over equal time intervals by the amount 
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s ~ I v , ? ~ n /2 .  ( 2 . 7 )  

T h i s  a s s u m p t i o n  can  be u sed  t o  model  t h e  m a c r o s c o p i c  dynamics  o f  FF. The c a s e  ~ < 1 / 2 ,  i n -  
t u i t i v e l y  corresponding to brittle fracture, necessarily makes the model of crack-tip ad- 
vance considerably more complex. 

3. Model of Fatigue-Crack Propagation. For the sake of definiteness, we will examine 
a fatigue crack loaded by the first mode. As is known [i], fatigue cracks are nucleated in 
planes that are not perpendicular to the direction of the maximum tensile stresses. How- 
ever, the macroscopic crack propagates perpendicularly to these stresses. Thus, in order to 
use the von Mises criterion (i.i) to isolate a local FF region, it is necessary to write the 
stresses in the form of the superposition of at least two loading modes [i, i0]: 

--  Kr [ c o s O [ ' - - "  0 sin 3~02 ) - - A s i n 4 ( 2  +cos~c~)s__~_)],  
- V2-  [ 2 11 sm 

a v =  cos -T  l + S i n T s m - T -  + A c ~ 1 7 6  _ , 

% [  0 O .  30 + (  . 0 . 3 .~) ]  
Txv ---- ] /  cos - ~  sin 7 -  sin --~- + A cos 1 - -  sin =2- sin 

o~ = v(a~ + or), A = K ~ / K t  

(3.1) 

(all of the notation is standard). Then the second invariant of the deviator has the form 

d~ _ v 2 - - v +  I 
:' 2 

3 ( ~  + %)" - -  ~ %  + ~ v .  ( 3 . 2 )  

Substitution of Eqs. (3.1), (3.2) into (i.I) gives us the equation of the boundary of 
the local FF zone r(0). Within this zone, elastic solutions (3.1) - as the criteria of 
linear fracture mechanics - are invalid. However, under conditions of self-similar crack 
growth corresponding to the second stage of FF - when crack growth is controlled by K I - 
it can be assumed that the course of FF processes occurring in the plastic zone is deter- 
mined by its size and configuration. We will assume that damage accumulation in the zone 
occurs as DLA described by Eqs. (2.1) with the multiplicative kernel (m > 1/2). Here, the 
damage cluster breaks up in the direction of the maximum of r(8) and the crack-growth incre- 
ment obeys (2.7). Then the advance of the crack can be modeled by iterations of a discrete 
mapping: 

K H / K ,  = ~(l) sin (--%a), m ---- t, 2 . . . . .  
( 3 . 3 )  

Here, ~m is the angle between a normal to the tensile stresses at the distance from the 
crack tip o= and the deflected crack tip for the increment m; 8m M is the angle corresponding 
to the maximum r(8); X(s is a function accounting for the relationship between the first 
and second loading modes with a change in ~m and crack length. We will assume that K I is 
independent of @m:[ll], while KII m o~ sin(-~V~. For example, it can be assumed that 

%(Z) = X/S~, where X accounts for the intensification of the second mode at inclusions, 
grain boundaries, and other discontinuities. 

Unfortunately, if we attempt to simplify (i.i) after the insertion of (3.1), (3.2) so 
as to be able to find 8 M analytically, we find that we can do this only for an incompressible 
medium (~ = 1/2). In this case, 

2 

The same expression for J2 is obtained if it is assumed that the stress tensor and deviator 
have four components. In this case, there are two maxima differing by ~ in the function 
r(@) describing the boundary of the plastic zone. Of these two, we choose the one correspond- 
ing to advance of the crack in a direction which compensates for the existing deviation from 
the main plane of the crack. Such a choice is justified by the fact that - as can easily be 
proven - the material between the deflected crack tip and the main direction of the crack 
(perpendicular to o~) undergoes tension in two directions x and y, while the material on the 

274 



60. 
0 

oo z&" JO-/  
s'o 

dee 
o ooIAt ~ 

a PMMA 
n En 35 
�9 En 24 

& 
A 

A 

6'0 fl, de i 

i ...... 

Fig. i Fig. 2 

other side of the tip undergoes compression in one direction and tension in another. With 
allowance for this, at v = 1/2, we find 

r (0) = 2no--"~ (1 + A 2) + A cos 0 ( s in  0 + A cos 0) , 

M 
Om = a r c t g  ( s i g n  ( - -  q~m) ] / ~  + i - -  z ) ,  z = (3A 2 - -  l ) / (4A) ,  

A = K . / K ~  - -  2~(l) s i n  ( - -q0~) .  

(3.4) 

Figure I shows data from [Ii] for the four-point bending of beams of different: mate- 
rials, with $ = ~/2 - ~. The solid line shows the relation for the angle of crack advance 
0 corresponding to the Erdogan-Sih criteria [lll, while the dashed line corresponds to (3.4) 
with the ratio KII/K I calculated for the conditions of the experiment in [Ii]. The satis- 

factory agreement - particularly at small $ (large ~) - validates the use of (3.4). To com- 
plete the construction of the model, we need to assign the value of s. This quantity will 

be calculated in accordance with (2.7) from the formula s = $(r(OM))7. We will assume that 

the crack advances by the maximum amount rc(0M) at K I = Klf c or 

M 3KI~c Pc(0 M)= r c = ~. 
2~o~ 

It follows from this that 

M s= r c [r(OM)/r~] ? (3.5) 

(rcM can be calculated in terms of the critical crack length ~c corresponding to Kif c = 

o~ ~c). 

Having recorded the position of the crack after i00 crack increments with (o~/Oy) 2 = 

9"26"10-4, ~c = 50 mm, an initial crack length ~0 = 5 or 15 mm, and ~ = 1-3, we numerically 
integrated (3.3)-(3.5) and obtained a linear curve in the coordinates log (d~/dN) - log (KI) 
(the kinetic curve of fatigue fracture [2]). With an accuracy better than 0.2%, the slope 
of this curve (the Paris index) was determined to be n = 2y. This result is indicative of 
the "good" random properties of the mapping described in detail above. 

4. Stochastic Properties of the Mapping ~m+1(~m). To study the properties of this map- 

ping, we will simplify (3.3)-(3.5) by fixing %. Figure 2 shows the function ~m+1(~n~) for 
different X. The discontinuity at ~m = 0, due to the symmetry of the plastic zone, makes 
the mapping similar to the so-called Bernoulli shift [12] - a piecewise-linear random mapping 
the iteration of which is equivalent to a certain realization of a sequence of coin tosses. 
Figure 3 presents a bifurcation diagram of the mapping ~m+1(~m) with fixed X. The diagram 
gives an illustration of its invariant density and is nonuniform even at values % > 0.3 cor- 
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TABLE i 

D 

t ,5 i ,088i 
1,0 t ,0635 
0,5 1,0605 
0,2 i,1560 

Fig. 3 

TABLE 2 

D A~ 

1,095i 0,3--0,5 
t,t202 0,2--0,3 
i,1524 0,13--0,t5 

responding to the quote "good" random regimes. However, even at lower X - when "branches" 
are clearly visible on the diagram - the Lyapunov index of this mapping remains small but 
positive and is roughly equal to X, i.e., the mapping ~m+1(~m) is random. This by itself 
justifies the selection criterion 8 M and opens up the possibility of statistically account- 
ing for the effect of given features of the material on FF by introducing additional param- 
eters into the model. 

The mapping ~m+1(~m) constructed using the Erdogan-Sih criterion (the direction of the 
maximum a e [ii]) yields only one bifurcation at X = I and is stable at ~ < I when ~m = 0. 
This makes it possible to use this criterion to construct a universal. FF model. As in the 
case of the general form of J2 (3.2), it is not possible to analytically find the angle 0 T 
(~m+1 = ~m + 0T) by means of the Tresca criterion (nucleation of cracks in accordance with 

the angles of the maximum ~xy). 

Thus, the actual process of fatigue-crack propagation is modeled as the steady state of 
a certain dynamic system corresponding [13] to steady state of mapping (3.3)-(3.5). The 
study of this mapping is an independent problem (such as due to the spontaneous disturbance 
of symmetry at 0.01 < I < 0.i in Fig. 3, which might be connected with the nonconservative 
nature of the mapping, i.e., the absence of the Hamiltonian; this qualitatively reflects the 
dissipative character of fatigue fracture) and lies outside the scope of the present study. 

5. Fractal Properties of the Model. The randomness of mapping (3.3)-(3.5) makes it 
possible to suggest that geometric similitude exists between model crack profiles, i.e., 
that they are fractal in nature. It can be seen from Fig. 2 that for large I the "trajec- 
tory" of a crack in the plane (~m, ~m+~) will remain in the first or third quadrants longer 
than when X is smaller, i.e., ~ should have an effect on the geometric characteristics of 
the crack profile (such as its FD). 

Table i shows data from the calculation of the FD of profiles by the method described 
in the appendix for different fixed X and 7 = 1.5. It is apparent that there is some corre- 
lation between X and the fractal dimension D. At X < 0~2, the "self-similar" shallow sec- 
tion of the fractal graph acquires the character of a discontinuity. This is a manifesta- 
tion of the quasiperiodic properties of the mapping - wanderings among the "branches." 

In the case of the complete mapping (3.3)-(3.5) and fixed X, the FD of the profiles de- 
pends on 7- Table 2 shows data on the correlation of 7 and D at X = 20 [AI is a sample 
range of the function X(s The positive correlation between 7 and D agrees qualitatively 
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TABLE 3 
|,, ,f 

Method 

Minkowsky-Buligand 1 
Cell counting 
Spectral-density method [16] 
Method of horizontal struc- 
tural elements 
Variation method 

Our method 

Measured D 

1,356 
i,4i3 
i 349 
t ,537 

t ,495 

t ,4698 

Deviation 

0,144 
0,087 
0,05I 
0,037 

0,005 

0,0302 

with Eq. (2.4), since it can be reliably assumed that n = 2~ (as was already noted). With 
the advance of the crack, % increases as ~(7 -I)/2. Thus, in principle, it is possible to 
model the transition from the periodic regime of fatigue-crack propagation (fatigue striae 
[2]) to completely random regimes with k > 0.3. The proposed model also makes it easy to 
fix the size of the plastic zone to reflect structural features of certain materials. 

The proposed approach to modeling the propagation of fatigue cracks, based on discrete 
random mappings, offers a wide range of possibilities for incorporating empirical FF laws 
(the Paris law, fatigue striae, etc.) [14] into the model. There are no serious obstacles 
to generalizing the model to the case of complex stress fields or the simultaneous propaga- 
tion of several fatigue cracks. This in turn opens up the possibility of numerically study- 
ing the fatigue fracture of specific parts and structures. 

The authors thank I. Zh. Bunin for his help in refining some of the calculations. They 
are also grateful to Professor V. S. Ivanova and V. N. Geminov for their useful comments. 

Appendix. Direct Calculation of Fractal Profiles. Many algorithms have now ]been de- 
veloped to calculate fractal dimensions, the most accurate being algorithms which employ 
the expansion method [15, 16]. However, the latter require a considerable amount of machine 
time because they in essence involve the analysis of an irregular two-dimensional object. 
This contrasts with algorithms which employ the sheaf method [15] and deal directly with the 
profile in numerical form. One shortcoming of the sheaf method is the irregularity of the 
fractal graph and, thus, the relatively low accuracy of calculation of the FD. Described 
below is a method which can be considered intermediate between the above two types of algo- 
rithms, since it involves the analysis of a "unidimensional" profile but is similar to al- 
gorithms based on the expansion method with regard to the logic of its construction. 

In actual studies, researchers deal with profiles that have been transformed after 
digitization into a sequence of segments which intersect at points with specified coordi- 
nates - segments of a broken line. One variant of the expansion method entails calculation 
of the number of disks of a certain size placed along the line in such a way as to touch 
both one another and the line. Here, the FD is found from the slope of the double-log de- 
pendence of the number of disks on their size [5, 15]. Having moved the chain of disks in 
such a way as to center the greatest possible number of disks on the line and having joined 
their centers by other segments, we obtain a second broken line which has segments of a 
specified length and approximates the first broken line. The same approximation can be ob- 
tained in a simpler and more illustrative manner: having chosen a point on the initial 
broken line, lay off a certain-size segment from this point such that the other end of the 
segment belongs to the initial broken line and a piece of the profile of the greatest pos- 
sible length is enclosed between its ends; lay off the next segment from this end/'and so 
forth. This chain approximates the initial broken line in a manner similar to the chain ob- 
tained after connecting the centers of the displaced disks. However, the approach just de- 
scribed is distinctly different from the sheaf method, as can be seen from the figures in 
[5, 15, 17]. 

The algorithm for constructing such an approximation of the initial broken line (pro- 
file) is elementary and does not require the same amount of machine time as the expansion- 
method algorithm [16]. In addition, the algorithm quite reliably reproduces empirical mea- 
surements of profile roughness on a profilometer with different-size sensitive elements [18]. 
The FD is determined from the slope of the dependence of log (Ng/L') on log ~ (N is the number 
of segments of length E required to approximate a broken line with a projection of the length 
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L' [18]). Table 3 shows data from calculation of the FD corresponding to the Quiswetter 
curve with the use of different methods. Also shown are the deviations from theexact value 
D = 1.5. The proposed method gives a regular fractal graph with a correlation coefficient 
of 0.9881 for the points on the straight section [14]. It can be seen from Table 3 that it 
is the equal of expansion algorithms with respect to accuracy in determining the FD. 
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